夹芯复合材料作为更轻、更强、更有竞争力的产品,在国外已经广泛应用在风力发电、航空航天、交通运输、船艇制造、建筑和其他工业领域。二次世界大战期间,盟军的蚊式战斗机的机身上已经使用了轻木夹芯结构。半个世纪以来,从产业角度而言,欧美、澳洲等国家在风电力发电叶片、夹芯玻璃钢船艇的设计、生产技术上的发展和应用比较早。逐年来不断地应用实践,夹芯复合结构的力学理论得到完善,力学界对复合材料结构的破坏损伤模式的研究也逐渐发展完善,对轻质夹芯材料的采用,将从必然走向自由。
复合材料与金属均一材料相比具有自身的特殊性,复合材料作为“材料”的同时本身又是一种“结构”。近来年,我国风力发电、航空航天工业的发展,为夹芯复合材料的材料研发、结构设计、工艺开发提供了很好的契机。夹芯复合材料理念为“高强度刚度、低重量”要求严格的产业提供了全新的材料、结构、工艺的解决方案;使复合材料从传统单层实心玻璃钢向夹芯玻璃钢的转换,实现了产品升级,提高了市场竞争力。可以认为,夹芯复合材料作为朝阳产业,在我国拥有巨大的市场容量和发展空间。
夹芯复合材料也被形象称为“三明治材料”或“三明治结构”,这种材料和结构由上下两层抗拉抗压性能优异的表层材料(层合木板、金属、玻璃钢、碳纤维或芳纶纤维增强树脂基体塑料)、轻质高强并抗剪切的夹芯材料和胶黏剂构成。常见的夹芯材料有蜂窝板、巴尔沙轻木和各种高分子的泡沫等。“三明治”夹芯为结构设计提供了高刚度、高强度、低重量的优异组合,从而实现了产品卓越的强重化。以船艇和高速列车车体为例,在不折损结构刚度强度的同时,重量的减轻带来了动力产品加速提速性能、操纵性能、运能运力的提升,而运能的提升又达到了节能环保的效果。
采用“三明治”夹芯复合材料生产产品,夹芯材料的选择上应当首先注意材料在力学、极限温度等方面的性能特点,选择合适的材质,进而配合表层材料和黏结剂树脂基体的选择,包括纤维种类、克重、层数、夹芯材料密度、厚度。对整个铺层结构作出铺层设计。
结构设计的方法有几种,船艇的夹芯材设计规范,我国主要使用国外船级社的规范指导。另外,使用公式计算软件做典型铺层设计以实用及Ansys、Femap等有限元计算软件做整体结构分析计算的方法。
由于树脂基体是通过工艺过程才能实现同纤维增强材料和夹芯芯材的结合,而工艺的不同会带来截然不同的数值纤维含量和瑕疵数量多少,从而很大程度上影响最终结构的性能和疲劳寿命。传统敞开式手糊工艺的纤维含量只有40%左右,并且气泡含量多。而采用“三明治”夹芯材料制作以真空袋压法是目前最为清洁、方便、优质的真空导流工艺。
真空导流工艺是将玻璃纤维增强材料和泡沫夹芯材料干法预铺设在密闭的模具内,然后安装供树脂进入和流动扩散的进胶接头和引流管道,随后通过真空薄膜袋密封和真空泵的抽气实现整个模具面积上铺层内部的高真空环境(一般为99%以上的真空度)。在系统保压良好的情况下将低粘度的树脂通过进胶管道由大气压注入系统内部,树脂按照预先设计的管道扩散,在预订时间内浸泡有铺层结构,而后胶化固化。
整个真空导流过程可重复,可质量控制,产品气泡含量降到最低,产品的纤维含量达到65%以上。而且由于真空薄膜的密闭作用把苯乙烯等有害气体的扩散降低了90%以上,实现了健康、环保的要求。