碳纤维复合材料(CFRP)的应用(IV)——导弹篇
箱(筒)式发射技术是当今世界上流行的、先进的发射装置设计技术。因其能够有效地提高导弹武器系统的贮存可靠性,并具有全天候适应能力及战场快速反应能力等优点,被当今各种陆基和舰载先进导弹武器系统采用。随着导弹技术的快速发展,对发射箱(筒)的体积、质量、环境适应性等方面也提出更为严格的要求。由于复合材料具有高比强、高比模、结构可设计等优点,国内外专家就复合材料在大截面、长尺寸的战略导弹发射筒应用方面开展了大量的研究工作,并获得了成功。
我国战略导弹发射筒也采用树脂基复合材料,比铝合金发射筒轻28%。发射筒采用纤维增强复合材料,可以很好地解决金属结构筒体存在的重量大、焊接变形、易锈蚀等问题,是未来主要发展趋势之一。对于复合材料薄壁筒体,在满足力学性能的同时,还应满足耐烧蚀、电磁屏蔽、耐环境等功能要求,因此必须充分注重其结构、功能一体化铺层设计。本文碳纤维增强复合材料发射筒筒体的材料设计,采用以碳纤维为增强体、环氧树脂为基体制作筒体的复材结构层,以钢内衬作为耐烧蚀层和屏蔽层,法兰、吊装箍等辅件采用高强铝合金材料。图1 碳纤维导弹发射筒
通常情况下,玻璃纤维增强材料强度高,韧性好,但刚度不足。碳纤维增强材料(CFRP)强度高,刚性好,但韧性不足。根据以上情况,考虑利用两种或两种以上的纤维,采用混杂的增强方式,增强同一种树脂基体组成复合材料,能够取所长,补其所短。可以在较广泛的范围满足产品对复合材料性能的使用要求,以此成型发射器身管,来提高发射器的强度、刚度和抗冲击性要求。 - 导弹发射箱盖的作用是:导弹正常贮存时保护弹头避免受到外界损伤并防止发射箱内的惰性气体外泄,导弹发射时箱盖能够及时打开不影响导弹正常发射,由于传统的发射箱盖常采用机械打开盖或爆破盖这两种形式的盖体不同程度上都具有打开反应时间慢、质量大和维修费用高等缺点,不利于导弹部队快速作战要求。
鉴于碳纤维复合材料轻质高强和可设计性强等特点,碳纤维复合材料发射箱盖正在逐渐代替传统发射箱盖,而利用发动机喷出的燃气流造成压力实现自动开盖的开盖方式凭借其高效、可靠和安全的优点被大规模推广应用。- 选用碳纤维复合材料用作导弹发射箱箱盖的特点:选择环氧乙烯基酯类树脂兼具环氧树脂强度高和不饱和聚酯树脂工艺性好的特点,用环氧乙烯基酯做树脂、碳纤维做增强材料制造的碳纤维增强复合材料既具有优良的综合机械力学性能,又具有良好的耐高温性和耐候性以及较高的尺寸稳定性。
在导弹发射时,传统的机械打开盖与爆破盖有重量大、打开反应时间慢和维修费用高等缺陷,鉴于碳纤维复合材料轻质高强、抗腐蚀等优点,采用复合材料发射箱盖代替传统发射箱盖可以解决这些问题。采用碳纤维增强复合材料制造发射箱箱体,可以很好的解决金属结构箱体存在的重量大、焊接变形、易锈蚀等诸多问题。采用复合材料制造发射箱,可以将结构做得非常简单、紧凑,使弹箱质量比远小于1,同时提高了导弹贮存和运输效率,相比金属材料有更高的设计自由度。碳纤维复合材料便携式导弹发射器主要用于单兵便携作战,武器系统结构紧凑,外形尺寸小,携带重量轻。对发射器的主要性能要求是:a)导弹采用的是筒式发射方式,发射器必须是薄壁圆筒形截面结构。c)要求身管对导弹具有足够的锁定强度,密封性好,透湿率、轴向变形要小。d)发射器,导弹,安全锁,一、二号电气接插件,压力调接阀,闭气膜,呼吸膜,前、后密封缓冲组件等组合构成武器系统。发射器为零部件提供了安装基准。基于上述要求,碳纤维/玻璃纤维增强树脂基复合材料是发射器身管材料的首选方案。这样的身管方案具有结构紧凑、重量轻、强度高、刚性好、便于生产的特点。 按照发射器的强度和结构要求及纤维缠绕的特点,身管的结构采用螺旋缠绕和环向缠绕相结合的方式,以便发射器身管的径向、轴向强度和刚度满足综合性能要求。管身螺旋缠绕角度为35°,环向缠绕角度为 90°,螺旋循环数为 96 次,根据确定的螺旋缠绕角、缠绕方式、缠绕顺序以及螺旋和环向缠绕层数进行发射器身管的强度计算。 采用碳纤维/玻璃纤维增强复合材料研究导弹发射器身管,发射器重量轻,强度高,刚性好。碳纤维是弹箭复合材料发射器轻量化研究的首选材料之一。碳纤维导弹发射器身管的透湿率、轴线变形、锁弹强度、密封性能可以满足导弹发射器的设计要求,同时还具有电磁屏蔽的作用。发射简采用纤维增强复合材料,可以很好地解决金属结构筒体存在的重量大、焊接变形、易锈蚀等问题,是未来主要发展趋势之一。 发射筒筒体结构设计主要根据导弹外形结构、弹翼分布、导弹在筒内的支撑与导向方式以及其他使用要求进行。筒体截面形状为圆形,发射筒内壁需能耐受高温燃气流冲刷和多次使用要求,筒内壁选用了金属内衬,外层承载结构采用碳纤维/环氧树脂复合材料,考虑到筒前端受到较大的冲击载荷,发射筒前、后法兰选用高强铝合金,筒体设计有前、后吊装箍,保证发射筒的起吊和放置,吊装箍为高强铝合金材料。发射筒筒体由金属内衬、复材结构层、前法兰、后法兰、环筋、前吊装箍、后吊装箍等组成。复合材料发射筒以钢内衬为芯模,外缠碳纤维/环氧树脂复合材料为结构层,在一定温度下高温固化成型。复合材料发射筒采用自动化设备连续纤维成型工艺简便且材料制造和制品成型同时完成,体现了复合材料制品的材料、设计和制造三者间的密切关系。 M3“卡尔·古斯塔夫”在战场上的优异表现,美国陆军决定大规模采购装备这一瑞典制武器。2014年,瑞典萨博公司推出了M4新型反坦克火箭,M4重6.7KG,较卡尔·古斯塔夫M3轻约3KG,外壳采用碳纤维复合材料(减重0.8KG),通过重新设计文丘里管使火箭炮减重0.9千克,M4的总长度减到了1米以内。超轻型迫击炮研制时间也是从2015年就已经开始,正好与某超轻型120毫米迫击炮的总设计师讲述的“2015年我又担任了轻120迫击炮的总设计师”相吻合,估计其定型名称或许可能叫15式“轻120迫击炮”,从目前公开的信息,此迫击炮与美国洛克希德导弹与宇航公司已用碳纤维复合材料制造了一种120毫米迫击炮管一样,高性能碳纤维用作迫击炮身管外部增强层缠绕,内部采用Ni?或者钛合金炮钢材料做内衬(未来有可能使用更轻的M46碳纤维方案),既大大降低了重量,又避免了完全使用碳纤维的引起的高温烧灼问题,也便于分成两节。
碳纤维复合材料(CFRP)的应用(V)-军用飞机篇作为一项新兴的材料技术,复合材料首先在军用飞机上得到广泛应用。60年代,玻璃纤维增强复合材料首先开始应用于飞机的整流罩、襟副翼中。此时,复合材料力学性能还相对较低,应用复合材料制造的飞机零部件尺寸小、受力水平小。60年代后期,硼纤维/环氧树脂复合材料开始应用于飞机结构上。例如,F-14于1971年开始将硼纤维增强环氧树脂复合材料应用在平尾上。70年代中期,诞生了以碳纤维为增强体的高性能复合材料,开启了复合材料在飞机上的大规模应用。具有卓越高比强度、高比模量、耐腐蚀、耐疲劳性能的碳纤维增强复合材料非常适合航空装备需求。军机的垂尾、平尾等受力较大、尺寸较大的部件开始逐步使用碳纤维增强复合材料,如F-15、F-16、Mig-29、幻影 2000、F/A-18等飞机的复合材料尾翼、垂尾。从70年代至今,国外军机尾翼已经全部采用复合材料。采用复合材料的平尾、垂尾一般占飞机全部结构重量的 5%-7%。在尾翼进入复合材料时代后,复合材料的应用开始向军机的机翼、机身等结构受力大、尺寸大的主要构件发展。1976年,麦道公司率先研制了F/A-18复合材料机翼,并于1982年正式进入服役,把复合材料用量提高到13%。此后各国所研制的军机的机翼也几乎全部采用了复合材料。例如美国的AV-8B、B-2、F/A-22、F/A-18E/F、F-35,法国的“阵风”,瑞典的 JAS-39,欧洲四国联合研制的“台风”,俄罗斯的S-37等。目前世界先进军机中复合材料用量占全机结构重量的20%-50%不等,主要应用复合材料的部位包括整流罩、平尾、垂尾、平尾翼盒、机翼、中前机身等。如果复合材料占飞机总重量的50%左右,则全机绝大部分结构件由复合材料制成,如B-2隐形轰炸机。2020年航天领域的碳纤维需求量占航空航天领域碳纤维需求的比例为1.80%,需求基数不大但高性能需求强,应用广泛,同时随着我国远程战略武器的快速发展,有望扩大碳纤维复材的应用占比。吸波隐身:普通碳纤维对电磁波是反射体,不具备吸波功能,通过对碳纤维进行表面改性(如镀镍、涂覆碳化硅涂层等)、研制新型碳纤维(如异形截面碳纤维、螺旋碳纤维、多孔碳纤维、碳纳米管等),能显著改善其电磁性能。特种碳纤维用于制造隐身飞机,如B-2隐身轰炸机,其整体机身除了主梁和发动机机舱采用钛复合材料外,其余部分均采用碳纤维复合材料。美国隐身战机F-22,CFRP用量达到24%,英国Typhoon战机复合材料用量高达40%。结构型碳纤维吸波复合材料结合了复合材料轻质高强的结构优势和吸波特性,是雷达隐身材料的重要发展方向。碳纤维吸波材料属于功能和结构一体化的优良吸波材料,随着隐身结构材料的完善和提高,碳纤维复合材料的需求还将持续增长。我国四代机之前,复合材料的应用范围仅限于尾翼、鸭翼等次承力结构上,用量占比不到10%,四代机复合材料用量有了明显突破,复材用量达到整机结构件的 20%左右。军用飞机用先进树脂基复合材料经过近40年的发展,已经从最初的非承力构件发展到应用于次承力和主承力构件,可获得减重20%~30%的显著效果。从用量来讲,当前先进军用飞机的复合材料用量已超过30%,今后在用量上的比例将趋于稳定。在军机制造中,树脂基复合材料可用于制造作战飞机的雷达罩、机翼、机身、鸭翼、平尾和发动机外涵道等。美国F-35本身制造上大量使用了高强度碳纤维纤维复合材料。尤其是在蒙皮和机翼结构和机体结构部件上,大量创造性地使用了碳纤维复合材料。它所用的碳纤维复合材料已占全机总重量的1/4,占机翼重量的1/3。可以说F-35减重上,碳纤维的功劳首屈一指。隐形喷气式飞机机身覆盖着一种雷达吸收材料(RAM),如B-2“精灵”或F117“夜鹰”,目的是将接受电磁波转化为热量。RAM在高温、潮湿和摩擦下会失去完整性。北卡罗来纳州立大学的研发团队开发了一种碳纤维增强复合聚合物(CFRP)蒙皮,以解决RAM限制引起的问题,并被用于B-21隐形轰炸机。该复合材料由碳纳米管(CNTs) 进行了增强,碳纳米管强度高、重量轻,能够承受超过1800°C 的温度,并有助于传导传入的电磁能。试验证明,新的复合材料拥有极低的发射率,几乎无法被检测到,与目前隐形飞机上使用的仅能吸收70-80%的RAM相比,对电磁波的吸收率可达90%以上。这种新材料将喷涂到飞机上,厚度为3毫米。歼11系列和成飞的歼-10、歼-20系列,机翼都大量采用碳纤维复合材料,中国航空工业最近20年,具有大量采用碳纤维铺层零件制造的成功经验。对于我国而言,在20世纪90年代末才着手研制歼-20飞机,2010年底才开始试飞工作,技术上有后发优势。歼-20的前一代歼-10飞机的鸭翼就整体采用了碳纤维增强双马来酰亚胺树脂基体的高性能复合材料,这类材料的雷达信号特征比金属材料小得多,而通过在树脂基体之内掺杂其他隐身材料,这类复合材料的隐身特性可有更大提高。歼-20的鸭翼同样会采用后续的研究成果,与之相比,F-22的水平尾翼还采用部分金属材料,其隐身特性未必更好。此外,歼-20的鸭翼上反,机翼下反,被鸭翼前缘反射的雷达波一般不会继续照射到主机翼前缘而形成二次反射,这也是隐身的有利因素。